
NSI

Olivier Paquet, Aghiles Kheffache, François Colbert, Berj Bannayan

Dec 21, 2021

GENERAL

1 Background 3

2 Help Wanted 5

3 The Interface 7

4 Nodes 27

5 Script Objects 47

6 Rendering Guidelines 49

7 Cookbook 61

8 Acknowledgements 65

9 Index 67

Index 69

i

ii

NSI

Authors
Olivier Paquet, Aghiles Kheffache, François Colbert, Berj Bannayan

GENERAL 1

NSI

2 GENERAL

CHAPTER

ONE

BACKGROUND

The Nodal Scene Interface (s) was developed to replace existing APIs in the 3Delight renderer which were showing
their age. Particualry the RenderMan Interface and the RenderMan Shading Language.

Having been designed in the 80s and extended several times since, they include features which are no longer relevant
and design decisions which do not reflect modern needs.

This makes some features more complex to use than they should be and prevents or greatly increases the complexity
of implementing other features.

The design of the s was shaped by multiple goals:

Simplicity
The interface itself should be simple to understand and use, even if complex things can be done with it.
This simplicity is carried into everything which derives from the interface.

Interactive Rendering and Scene Edits
Scene edit operations should not be a special case. There should be no difference between scene
description and scene edits. In other words, a scene description is a series of edits and vice versa.

Tight Integration with Open Shading Language
s integration is not superficial and affects scene definition. For example, there are no explicit light sources
in s: light sources are created by connecting shaders with an emission() closure to a geometry.

Scripting
The interface should be accessible from a platform independent, efficient and easily accessible scripting
language. Scripts can be used to add render time intelligence to a given scene description.

Performance and Multi-Threading
All API design decisions are made with performance in mind and this includes the possibility to run all API
calls in a concurrent, multi-threaded environment. Nearly all software today which deals with large data
sets needs to use multiple threads at some point. It is important for the interface to support this directly so it
does not become a single thread communication bottleneck. This is why commands are self-contained and
do not rely on a current state. Everything which is needed to perform an action is passed in on every call.

Support for Serialization
The interface calls should be serializable. This implies a mostly unidirectional dataflow from the client
application to the renderer and allows greater implementation flexibility.

Extensibility

3

https://www.3delight.com
https://opensource.imageworks.com/?p=osl

NSI

The interface should have as few assumptions as possible built-in about which features the renderer
supports. It should also be abstract enough that new features can be added without looking out of place.

4 Chapter 1. Background

CHAPTER

TWO

HELP WANTED

The s API is used in the 3Delight renderer. More and more users of this renderer are switching their pipelines from
using the RenderMan Interface™ to s.

Aka: this is being used in production.

2.1 Naming

There are many things that lack coherence & stringency in naming of parts of the API.

The current documentation has new naming suggestions for some arguments, attributes and nodes that are marked
with exclamation marks (!).

If you see a name written differently below the current name and marked with (!) this is a change suggestion.

Feedback on these is welcome. Please go to the GitHub repository for this documentation and open a ticket or
comment on an existing one.

2.2 Spelling, Grammar & Content

If you find typos, grammar mistakes or think something should be changed or added to improve this documentation,
do not hesitate to go ahead and open a pull request with your changes.

Each page has an Edit on GitHub button on the top right corner to make this process as painless as possible.

2.3 Language Bindings

The actual API is C which makes it easy to bind s to many different languages.

Currently the 3Delight renderer ships with free s bindings for C++, Python and Lua. There is also a Rust binding.

More bindings are always welcome!

5

https://3delight.com/
https://github.com/virtualritz/nsi-docs/
https://github.com/virtualritz/nsi-docs/issues
https:://crates.io/crates/nsi

NSI

6 Chapter 2. Help Wanted

CHAPTER

THREE

THE INTERFACE

3.1 The Interface Abstraction

The Nodal Scene Interface is built around the concept of nodes. Each node has a unique handle to identify it and a
type which describes its intended function in the scene. Nodes are abstract containers for data. The interpretation
depends on the node type. Nodes can also be connected to each other to express relationships.

Data is stored on nodes as attributes. Each attribute has a name which is unique on the node and a type which
describes the kind of data it holds (strings, integer numbers, floating point numbers, etc).

Relationships and data flow between nodes are represented as connections. Connections have a source and a
destination. Both can be either a node or a specific attribute of a node. There are no type restrictions for connections
in the interface itself. It is acceptable to connect attributes of different types or even attributes to nodes. The validity
of such connections depends on the types of the nodes involved.

What we refer to as the s has two major components:

• Methods to create nodes, attributes and their connections.

• Node types understood by the renderer.

Much of the complexity and expressiveness of the interface comes from the supported nodes. The first part was
kept deliberately simple to make it easy to support multiple ways of creating nodes. We will list a few of those in
the following sections but this list is not meant to be final. New languages and file formats will undoubtedly be
supported in the future.

3.2 APIs

3.2.1 The C API

This section describes the C implementation of the s, as provided in the nsi.h file. This will also be a reference for
the interface in other languages as all concepts are the same.

#define NSI_VERSION 1

The NSI_VERSIONmacro exists in case there is a need at some point to break source compatibility of the C interface.

#define NSI_SCENE_ROOT ".root"

The NSI_SCENE_ROOT macro defines the handle of the root node.

#define NSI_ALL_NODES ".all"

The NSI_ALL_NODES macro defines a special handle to refer to all nodes in some contexts, such as removing
connections.

7

NSI

#define NSI_ALL_ATTRIBUTES ".all"

The NSI_ALL_ATTRIBUTES macro defines a special handle to refer to all attributes in some contexts, such as
removing connections.

Context Handling

NSIContext_t NSIBegin(
int n_params,
const NSIParam_t *args

)

void NSIEnd(
NSIContext_t ctx

)

These two functions control creation and destruction of a s context, identified by a handle of type NSIContext_t.

A context must be given explicitly when calling all other functions of the interface. Contexts may be used in
multiple threads at once. The NSIContext_t is a convenience typedef and is defined as:

typedef int NSIContext_t;

If NSIBegin fails for some reason, it returns NSI_BAD_CONTEXT which is defined in nsi.h:

#define NSI_BAD_CONTEXT ((NSIContext_t)0)

Optional arguments may be given to NSIBegin() to control the creation of the context:

8 Chapter 3. The Interface

NSI

Table 1: NSIBegin() optional arguments
Name Type Description/Values
type string Sets the type of context to create. The possibletypes are:

render Execute the calls directly in the renderer.
This is the default.

apistream To write the interface calls to a stream, for
later execution. The target for writing the
stream must be specified in another argu-
ment.

streamfilename
stream.filename (!)

string The file to which the stream is to be output, if the context type
is apistream. Specify stdout to write to standard output and
stderr to write to standard error.

streamformat
stream.format (!)

string The format of the command stream to write. Possible formats are:
nsi Produces an nsi stream
binarynsi Produces a binary encoded nsi stream

stream.compression
stream.compression (!)

string The type of compression to apply to the written command stream.

streampathreplacement
stream.path.replace

int Use 0 to disable replacement of path prefixes by references to en-
vironment variables which begin with NSI_PATH_ in an s stream.
This should generally be left enabled to ease creation of files
which can be moved between systems.

errorhandler pointer A function which is to be called by the renderer to report errors.
The default handler will print messages to the console.

errorhandler.data pointer The userdata argument of the error reporting function.
executeprocedurals
evaluate.replace (!)

string A list of procedural types that should be executed immediately
when a call to NSIEvaluate() or a procedural node is encountered
and NSIBegin()’s output type is apistream. This will replace
any matching call to NSIEvaluate() with the results of the pro-
cedural’s execution.

Arguments vs. Attributes

Arguments are what a user specifies when calling a function of the API. Each function takes extra, optional argu-
ments.

Attributes are properties of nodes and are only set through the aforementioed optional arguments using the
NSISetAttribute() and NSISetAttributeAtTime() functions.

Optional Arguments

Any API call can take extra arguments. These are always optional. What this means the call can do work without
the user specifying these arguments.

Nodes are special as they have mandatory extra attributes that are set after the node is created inside the API but
which must be set before the geometry or concept the node represents can actually be created in the scene.

These attributes are passed as extra arguments to the NSISetAttribute() and NSISetAttributeAtTime()
functions.

Note: Nodes can also take extra arguments when they are created. These optional arguments are only meant to
add information needed to create the node that a particular implementation may need.

As of this writing there is no implementation that has any such optional arguments on the NSICreate()
function. The possibility to specify them is solely there to make the API future proof.

3.2. APIs 9

NSI

Caution: Nodes do not have optional arguments for now. An optional argument on a node is not the same
as an attribute on a node.

Attributes – Describe the Node’s Specifics

Attributes are only for nodes. They must be set using the NSISetAttribute() or NSISetAttributeAtTime()
functions.

They can not be set on the node when it is created with the NSICreate() function.

Caution: Only nodes have attributes. They are sent to the API via optional arguments on the API’s attribute
functions.

Passing Optional Arguments

struct NSIParam_t
{

const char *name;
const void *data;
int type;
int arraylength;
size_t count;
int flags;

};

This structure is used to pass variable argument lists through the C interface. Most functions accept an array of the
structure in a args argument along with its length in a n_params argument.

The meaning of these two arguments will not be documented for every function. Instead, each function will docu-
ment the arguments which can be given in the array.

name

A C string which gives the argument’s name.

type

Identifies the argument’s type, using one of the following constants:

Table 2: types of optional arguments
NSITypeFloat Single 32-bit floating point value.
NSITypeDouble Single 64-bit floating point value.
NSITypeInteger Single 32-bit integer value.
NSITypeString String value, given as a pointer to a C string.
NSITypeColor Color, given as three 32-bit floating point values.
NSITypePoint Point, given as three 32-bit floating point values.
NSITypeVector Vector, given as three 32-bit floating point values.
NSITypeNormal Normal vector, given as three 32-bit floating point values.
NSITypeMatrix Transformation matrix, in row-major order, given as 16 32-bit floating point

values.
NSITypeDoubleMatrixTransformation matrix, in row-major order, given as 16 64-bit floating point

values.
NSITypePointer C pointer.

10 Chapter 3. The Interface

NSI

Tuple types are specified by setting the bit defined by the NSIArgIsArray constant in the flags member and the
length of the tuple in the arraylength member.

Tip: It helps to view arraylength as a part of the data type. The data type is a tuple with this length when
NSIArgIsArray is set.

Note: If NSIArgIsArray is not set, arraylength is ignored.

The NSIArgIsArray flag is neccessary to distinguish between arguments that happen to be of length 1 (set in the
count member) and tuples that have a length of 1 (set in the arraylength member) for the resp. argument.

Listing 1: A tuple argument of length 1 (and count 1) vs. a (non-tuple)
argument of count 1

"foo" "int[1]" 1 [42] # The answer to the ultimate question – in an a (single) tuple
"bar" "int" 1 13 # My favorite Friday

The count member gives the number of data items given as the value of the argument.

The data member is a pointer to the data for the argument. This is a pointer to a single value or a number values.
Depending on type, count and arraylength settings.

Note: When data is an array, the actual number of elements in the array is 𝑐𝑜𝑢𝑛𝑡× 𝑎𝑟𝑟𝑎𝑦𝑙𝑒𝑛𝑔𝑡ℎ× 𝑛. Where 𝑛
is specified implictly through the type member in the table above.

For example, if the type is NSITypeColor (3 values), NSIArgIsArray is set, arraylength is 2 and count is 4,
data is expected to contain 24 32-bit floating point values (3× 2× 4).

The flags member is a bit field with a number of constants used to communicate more information about the
argument:

Table 3: flags for optional arguments
NSIArgIsArray to specify that the argument is an array type, as explained above.
NSIArgPerFace to specify that the argument has different values for every face of a geometric primitive,

where this might be ambiguous.
NSIArgPerVertex Specify that the argument has different values for every vertex of a geometric primitive,

where this might be ambiguous.
NSIArgInterpolateLinearSpecify that the argument is to be interpolated linearly instead of using some other, de-

fault method.

Note: NSIArgPerFace or NSIArgPerVertex are only strictly needed in rare circumstances when a geometric
primitive’s number of vertices matches the number of faces. The most simple case is a tetrahedral mesh which has
exactly four vertices and also four faces.

Indirect lookup of arguments is achieved by giving an integer argument of the same name, with the .indices
suffix added. This is read to know which values of the other argument to use.

Listing 2: A subdivision mesh using P.indices to reference the P argu-
ment

1 Create "subdiv" "mesh"
2 SetAttribute "subdiv"
3 "nvertices" "int" 4 [4 4 4 4]

(continues on next page)

3.2. APIs 11

NSI

(continued from previous page)

4 "P" "point" 9 [
5 0 0 0 1 0 0 2 0 0
6 0 1 0 1 1 0 2 1 0
7 0 2 0 1 2 0 2 2 2]
8 "P.indices" "int" 16 [
9 0 1 4 3 2 3 5 4 3 4 7 6 4 5 8 7]

10 "subdivision.scheme" "string" 1 "catmull-clark"

Node Creation

void NSICreate(
NSIContext_t context,
NSIHandle_t handle,
const char *type,
int n_params,
const NSIParam_t *args

)

This function is used to create a new node. Its arguments are:

context

The context returned by NSIBegin(). See context handling.

handle

A node handle. This string will uniquely identify the node in the scene.

If the supplied handle matches an existing node, the function does nothing if all other arguments match
the call which created that node. Otherwise, it emits an error. Note that handles need only be unique
within a given interface context. It is acceptable to reuse the same handle inside different contexts.
The NSIHandle_t typedef is defined in nsi.h:

typedef const char* NSIHandle_t;

type

The type of node to create.

n_params, args This pair describes a list of optional arguments. The NSIParam_t type is described in this
section.

Caution: There are no optional arguments defined as of now.

void NSIDelete(
NSIContext_t ctx,
NSIHandle_t handle,
int n_params,

(continues on next page)

12 Chapter 3. The Interface

NSI

(continued from previous page)

const NSIParam_t *args
)

This function deletes a node from the scene. All connections to and from the node are also deleted. Note that it is
not possible to delete the root or the global node. Its arguments are:

context

The context returned by NSIBegin(). See context handling.

handle

A node handle. It identifies the node to be deleted.

It accepts the following optional arguments:

Table 4: NSIDelete() optional arguments
Name TypeDescription/Values
recursiveint Specifies whether deletion is recursive. By default, only the specified node is deleted. If a value of 1

is given, then nodes which connect to the specified node are recursively removed. Unless they meet
one of the following conditions:

• They also have connections which do not eventually lead to the specified node.
• Their connection to the deleted node was created with a strength greater than 0.

This allows, for example, deletion of an entire shader network in a single call.

Setting Attributes

void NSISetAttribute(
NSIContext_t ctx,
NSIHandle_t object,
int n_params,
const NSIParam_t *args

)

This functions sets attributes on a previously node. All optional arguments of the function become attributes of
the node.

On a shader node, this function is used to set the implicitly defined shader arguments.

Setting an attribute using this function replaces any value previously set by NSISetAttribute() or
NSISetAttributeAtTime(). To reset an attribute to its default value, use NSIDeleteAttribute().

void NSISetAttributeAtTime(
NSIContext_t ctx,
NSIHandle_t object,
double time,
int n_params,
const NSIParam_t *args

)

This function sets time-varying attributes (i.e. motion blurred). The time argument specifies at which time the
attribute is being defined.

3.2. APIs 13

NSI

It is not required to set time-varying attributes in any particular order. In most uses, attributes that are motion
blurred must have the same specification throughout the time range.

A notable exception is the P attribute on particles which can be of different size for each time step because of
appearing or disappearing particles. Setting an attribute using this function replaces any value previously set by
NSISetAttribute().

void NSIDeleteAttribute(
NSIContext_t ctx,
NSIHandle_t object,
const char *name

)

This function deletes any attribute with a name which matches the name argument on the specified object. There
is no way to delete an attribute only for a specific time value.

Deleting an attribute resets it to its default value.

For example, after deleting the transformationmatrix attribute on a transform node, the transform will be an
identity. Deleting a previously set attribute on a shader node node will default to whatever is declared inside the
shader.

Making Connections

void NSIConnect(
NSIContext_t ctx,
NSIHandle_t from,
const char *from_attr,
NSIHandle_t to,
const char *to_attr,
int n_params,
const NSIParam_t *args

)

void NSIDisconnect(
NSIContext_t ctx,
NSIHandle_t from,
const char *from_attr,
NSIHandle_t to,
const char *to_attr

)

These two functions respectively create or remove a connection between two elements. It is not an error to create
a connection which already exists or to remove a connection which does not exist but the nodes on which the
connection is performed must exist. The arguments are:

from

The handle of the node from which the connection is made.

from_attr

The name of the attribute from which the connection is made. If this is an empty string then the connection
is made from the node instead of from a specific attribute of the node.

to

14 Chapter 3. The Interface

NSI

The handle of the node to which the connection is made. |

to_attr

The name of the attribute to which the connection is made. If this is an empty string then the connection is
made to the node instead of to a specific attribute of the node.

NSIConnect() accepts additional optional arguments.

Table 5: NSIConnect() optional arguments
Name Type Description/Values
value This can be used to change the value of a node’s attribute in some

contexts. Refer to guidelines on inter-object visibility for more
information about the utility of this parameter.

priority When connecting attribute nodes, indicates in which order the
nodes should be considered when evaluating the value of an at-
tribute.

strength int (0) A connection with a strength greater than 0 will block the pro-
gression of a recursive NSIDelete.

Severing Connections

With NSIDisconnect(), the handle for either node may be the special value ‘.all’. This will remove all connec-
tions which match the other three arguments. For example, to disconnect everything from the scene’s root:

1 NSIDisconnect(NSI_ALL_NODES, "", NSI_SCENE_ROOT, "objects");

Evaluating Procedurals

void NSIEvaluate(
NSIContext_t ctx,
int n_params,
const NSIParam_t *args

)

This function includes a block of interface calls from an external source into the current scene. It blends together
the concepts of a straight file include, commonly known as an archive, with that of procedural include which is
traditionally a compiled executable. Both are really the same idea expressed in a different language (note that for
delayed procedural evaluation one should use the procedural node).

The s adds a third option which sits in-between — Lua scripts. They are much more powerful than a simple
included file yet they are also much easier to generate as they do not require compilation. It is, for example, very
realistic to export a whole new script for every frame of an animation. It could also be done for every character in
a frame. This gives great flexibility in how components of a scene are put together.

The ability to load s commands straight from memory is also provided.

The optional arguments accepted by this function are:

3.2. APIs 15

NSI

Table 6: NSIEvaluate() optional arguments
Name Type Description/Values
type string The type of file which will generate the interface calls. This can

be one of:
apistream Read in an nsi stream. This requires either

filename or buffer/size arguments to
be specified too.

lua Execute a Lua script, either from file or in-
line. See also how to evaluate a Lua script.

dynamiclibrary Execute native compiled code in a loadable
library. See dynamic library procedurals
for an implementation example.

filename
stream.filename (!)

string The file from which to read the interface stream.

script string A valid Lua script to execute when type is set to lua.
buffer
size

pointer
int

These two arguments define a memory block that contains s com-
mands to execute.

backgroundload int If this is nonzero, the object may be loaded in a separate thread,
at some later time. This requires that further interface calls not
directly reference objects defined in the included file. The only
guarantee is that the the file will be loaded before rendering be-
gins.

Error Reporting

enum NSIErrorLevel
{

NSIErrMessage = 0,
NSIErrInfo = 1,
NSIErrWarning = 2,
NSIErrError = 3

}

typedef void (*NSIErrorHandler_t)(
void *userdata, int level, int code, const char *message

)

This defines the type of the error handler callback given to the NSIBegin() function. When it is called, the level
argument is one of the values defined by the NSIErrorLevel enum. The code argument is a numeric identifier
for the error message, or 0 when irrelevant. The message argument is the text of the message.

The text of the message will not contain the numeric identifier nor any reference to the error level. It is usually
desirable for the error handler to present these values together with the message. The identifier exists to provide
easy filtering of messages.

The intended meaning of the error levels is as follows:

16 Chapter 3. The Interface

NSI

Table 7: error levels
NSIErrMessage For general messages, such as may be produced by printf() in shaders. The default

error handler will print this type of messages without an eol terminator as it’s the duty
of the caller to format the message.

NSIErrInfo For messages which give specific information. These might simply inform about the state
of the renderer, files being read, settings being used and so on.

NSIErrWarning For messages warning about potential problems. These will generally not prevent pro-
ducing images and may not require any corrective action. They can be seen as suggestions
of what to look into if the output is broken but no actual error is produced.

NSIErrError For error messages. These are for problems which will usually break the output and need
to be fixed.

Rendering

void NSIRenderControl(
NSIContext_t ctx,
int n_params,
const NSIParam_t *args

)

This function is the only control function of the API. It is responsible of starting, suspending and stopping the
render. It also allows for synchronizing the render with interactive calls that might have been issued. The function
accepts :

Table 8: NSIRenderControl() intrinsic argument
Name Type Description/Values
action string Specifies the operation to be performed, which should be one of

the following:
start This starts rendering the scene in the pro-

vided context. The render starts in parallel
and the control flow is not blocked.

wait Wait for a render to finish.
synchronize For an interactive render, apply all the

buffered calls to scene’s state.
suspend Suspends render in the provided context.
resume Resumes a previously suspended render.
stop Stops rendering in the provided context

without destroying the scene.

3.2. APIs 17

NSI

Table 9: NSIRenderControl() optional arguments
progressive integer If set to 1, render the image in a progressive fashion.
interactive integer

If set to 1, the renderer will accept commands to edit scene’s state
while rendering. The difference with a normal render is that the
render task will not exit even if rendering is finished. Interactive
renders are by definition progressive.

frame Specifies the frame number of this render.
stoppedcallback
callback (!)

pointer A pointer to a user function that should be called on rendering
status changes. This function must have no return value and accept
a pointer argument, a s context argument and an integer argument:

void StoppedCallback(
void* stoppedcallbackdata,
NSIContext_t ctx,
int status

)

The third argument is an integer which can take the following val-
ues:

• NSIRenderCompleted indicates that rendering has com-
pleted normally.

• NSIRenderAborted indicates that rendering was inter-
rupted before completion.

• NSIRenderSynchronized indicates that an interactive
render has produced an image which reflects all changes
to the scene.

• NSIRenderRestarted indicates that an interactive render
has received new changes to the scene and no longer has an
up to date image.

stoppedcallbackdata
callback.data (!)

pointer A pointer that will be passed back to the stoppedcallback func-
tion.

3.2.2 The C++ API

The nsi.hpp file provides C++ wrappers which are less tedious to use than the low level C interface. All the
functionality is inline so no additional libraries are needed and there are no abi issues to consider.

Creating a Context

The core of these wrappers is the NSI::Context class. Its default construction will require linking with the
renderer.

1 #include "nsi.hpp"
2

3 NSI::Context nsi;

The nsi_dynamic.hpp file provides an alternate api source which will load the renderer at runtime and thus requires
no direct linking.

1 #include "nsi.hpp"
2 #include "nsi_dynamic.hpp"
3

4 NSI::DynamicAPI nsi_api;
5 NSI::Context nsi(nsi_api);

18 Chapter 3. The Interface

NSI

In both cases, a new nsi context can then be created with the Begin() method.

1 nsi.Begin();

This will be bound to the NSI::Context object and released when the object is deleted. It is also possible to bind
the object to a handle from the C API, in which case it will not be released unless the End() method is explicitly
called.

Argument Passing

The NSI::Context class has methods for all the other s calls. The optional arguments of those can be set by
several accessory classes and given in many ways. The most basic is a single argument.

1 nsi.SetAttribute("handle", NSI::FloatArg("fov", 45.0f));

It is also possible to provide static lists:

1 nsi.SetAttribute(
2 "handle",(
3 NSI::FloatArg("fov", 45.0f),
4 NSI::DoubleArg("depthoffield.fstop", 4.0)
5)
6);

And finally a class supports dynamically building a list.

1 NSI::ArgumentList args;
2 args.Add(new NSI::FloatArg("fov", 45.0f));
3 args.Add(new NSI::DoubleArg("depthoffield.fstop", 4.0));
4 nsi.SetAttribute("handle", args);

The NSI::ArgumentList object will delete all the objects added to it when it is deleted.

Argument Classes

To be continued . . .

3.2.3 The Rust API

The nsi crate provides Rust wrappers for the s API. These are based on the low-level wrapper crate nsi-sys that
contains autogenerated bindings on top of nsi.h.

Creating a Context

The core of these wrappers is the Context struct. Its construction triggers dynamic linking with the renderer.

1 let ctx = nsi::Context::new(None)?

3.2. APIs 19

NSI

3.2.4 The Lua API

The scripted interface is slightly different than its counterpart since it has been adapted to take advantage of the
niceties of Lua. The main differences with the C API are:

• No need to pass a s context to function calls since it’s already embodied in the s Lua table (which is used as
a class).

• The type argument can be omitted if the argument is an integer, real or string (as with the Kd and filename
in the example below).

• s arguments can either be passed as a variable number of arguments or as a single argument representing an
array of arguments (as in the "ggx" shader below)

• There is no need to call NSIBegin() and NSIEnd() equivalents since the Lua script is run in a valid context.

Below is an example shader creation logic in Lua.

Listing 3: shader creation example in Lua

1 nsi.Create("lambert", "shader");
2 nsi.SetAttribute(
3 "lambert", {
4 { name = "filename", data = "lambert_material.oso" },
5 { name = "Kd", data = 0.55 },
6 { name = "albedo", data = { 1, 0.5, 0.3 }, type = nsi.TypeColor }
7 }
8);
9

10 nsi.Create("ggx", "shader");
11 nsi.SetAttribute(
12 "ggx", {
13 {name = "filename", data = "ggx_material.oso" },
14 {name = "anisotropy_direction", data = {0.13, 0 ,1}, type = nsi.TypeVector }
15 }
16);

API calls

All (in a scripting context) useful s functions are provided and are listed below. There is also a nsi.utilities
class which, for now, only contains a method to print errors.

Table 10: s functions
Lua Function C equivalent
nsi.SetAttribute() NSISetAttribute()
nsi.SetAttributeAtTime() NSISetAttributeAtTime()
nsi.Create() NSICreate()
nsi.Delete() NSIDelete()
nsi.DeleteAttribute() NSIDeleteAttribute()
nsi.Connect() NSIConnect()
nsi.Disconnect() NSIDisconnect()
Evaluate() NSIEvaluate()

20 Chapter 3. The Interface

NSI

Optional function arguments format

Each single argument is passed as a Lua table containing the following key values:

• name – the name of the argument.

• data – the argument data. Either a value (integer, float or string) or an array.

• type – the type of the argument. Possible values are:

Table 11: Lua s argument types
Lua Type C equivalent
nsi.TypeFloat NSITypeFloat
nsi.TypeInteger NSITypeInteger
nsi.TypeString NSITypeString
nsi.TypeNormal NSITypeNormal
nsi.TypeVector NSITypeVector
nsi.TypePoint NSITypePoint
nsi.TypeMatrix NSITypeMatrix

• arraylength – length of the array for each element.

Here are some example of well formed arguments:

1 --[[strings, floats and integers do not need a 'type' specifier]] --
2 p1 = {
3 name = "shaderfilename",
4 data = "emitter"
5 };
6 p2 = {
7 name = "power",
8 data = 10.13
9 };

10 p3 = {
11 name = "toggle",
12 data = 1
13 };
14

15 --[[All other types, including colors and points, need a
16 type specified for disambiguation.]]--
17 p4 = {
18 name = "Cs",
19 data = { 1, 0.9, 0.7 },
20 type=nsi.TypeColor
21 };
22

23 --[[An array of 2 colors]] --
24 p5 = {
25 name = "vertex_color",
26 arraylength = 2,
27 data= { 1, 1, 1, 0, 0, 0 },
28 type= nsi.TypeColor
29 };
30

31 --[[Create a simple mesh and connect it root]] --
32 nsi.Create("floor", "mesh")
33 nsi.SetAttribute(
34 "floor", {
35 name = "nvertices",

(continues on next page)

3.2. APIs 21

NSI

(continued from previous page)

36 data = 4
37 }, {
38 name = "P",
39 type = nsi.TypePoint,
40 data = { -2, -1, -1, 2, -1, -1, 2, 0, -3, -2, 0, -3 }
41 }
42)
43 nsi.Connect("floor", "", ".root", "objects")

Evaluating a Lua script

Script evaluation is done through C, an s stream or even another Lua script. Here is an example using an s stream:

1 Evaluate
2 "filename" "string" 1 ["test.nsi.lua"]
3 "type" "string" 1 ["lua"]

It is also possible to evaluate a Lua script inline using the script argument. For example:

1 Evaluate
2 "script" "string" 1 ["nsi.Create(\"light\", \"shader\");"]
3 "type" "string" 1 ["lua"]

Both filename and script can be specified to NSIEvaluate() in one go, in which case the inline script will be
evaluated before the file and both scripts will share the same s and Lua contexts.

Any error during script parsing or evaluation will be sent to s’s error handler.

Some utilities, such as error reporting, are available through the nsi.utilities class.

Note: All Lua scripts are run in a sandbox in which all Lua system libraries are disabled.

Passing arguments to a Lua script

All arguments passed to NSIEvaluate() will appear in the nsi.scriptarguments table. For example, the
following call:

1 Evaluate
2 "filename" "string" 1 ["test.lua"]
3 "type" "string" 1 ["lua"]
4 "userdata" "color[2]" 1 [1 0 1 2 3 4]

Will register a userdata entry in the nsi.scriptarguments table. So executing the following line in the test.
lua script that the above snippete references:

print(nsi.scriptarguments.userdata.data[5]);

Will print:

3.0

22 Chapter 3. The Interface

NSI

Reporting errors from a Lua script

Use nsi.utilities.ReportError() to send error messages to the error handler defined in the current nsi con-
text. For example:

nsi.utilities.ReportError(nsi.ErrWarning, "Watch out!");

The and are shown in .

Table 12: Lua s error codes
Lua Error Codes C equivalent
nsi.ErrMessage NSIErrMessage
nsi.ErrWarning NSIErrMessage
nsi.ErrInfo NSIErrInfo
nsi.ErrError NSIErrError

3.2.5 The Python API

The nsi.py file provides a python wrapper to the C interface. It is compatible with both Python 2.7 and Python 3.

An example of how to us it is provided in python/examples/live_edit/live_edit.py.

3.2.6 The Interface Stream

It is important for a scene description API to be streamable. This allows saving scene description into files, com-
municating scene state between processes and provide extra flexibility when sending commands to the renderer1.

Instead of re-inventing the wheel, the authors have decided to use exactly the same format as is used by the Ren-
derMan Interface Bytestream (RIB). This has several advantages:

• Well defined ASCII and binary formats.

• The ASCII format is human readable and easy to understand.

• Easy to integrate into existing renderers (writers and readers already available).

Note that since Lua is part of the API, one can use Lua files for API streaming2.

3.2.7 Dynamic Library Procedurals

and nodes can execute code loaded from a dynamically loaded library that defines a procedural. Executing the
procedural is expected to result in a series of s API calls that contribute to the description of the scene. For
example, a procedural could read a part of the scene stored in a different file format and translate it directly into s
calls.

This section describes how to use the definitions from the nsi_procedural.h header to write such a library in C or
C++. However, the process of compiling and linking it is specific to each operating system and out of the scope of
this manual.

1 The streamable nature of the RenderMan API, through RIB, is an undeniable advantage. RenderMan is a registered trademark of Pixar.
2 Preliminary tests show that the Lua parser is as fast as an optimized ASCII RIB parser.

3.2. APIs 23

NSI

Entry Point

The renderer expects a dynamic library procedural to contain a NSIProceduralLoad() symbol, which is an entry
point for the library’s main function:

struct NSIProcedural_t* NSIProceduralLoad(
NSIContext_t ctx,
NSIReport_t report,
const char* nsi_library_path,
const char* renderer_version);

It will be called only once per render and has the responsibility of initializing the library and returning a description
of the functions implemented by the procedural. However, it is not meant to generate nsi calls.

It returns a pointer to an descriptor struct of type NSIProcedural_t (see below).

NSIProceduralLoad() receives the following arguments:

Table 13: NSIProceduralLoad() optional arguments
Name Type Description
ctx NSIContext_tThe s context into which the procedural is being loaded.
report NSIReport_tA function that can be used to display informational, warning or error mes-

sages through the renderer.
nsi_library_path const

char*
The path to the s implementation that is loading the procedural. This allows
the procedural to explicitly make its s API calls through the same implemen-
tation (for example, by using defined in nsi_dynamic.hpp). It’s usually not
required if only one implementation of s is installed on the system.

renderer_version const
char*

A character string describing the current version of the renderer.

Procedural Description

Listing 4: definition of NSIProcedural_t

typedef void (*NSIProceduralUnload_t)(
NSIContext_t ctx,
NSIReport_t report,
struct NSIProcedural_t* proc);

typedef void (*NSIProceduralExecute_t)(
NSIContext_t ctx,
NSIReport_t report,
struct NSIProcedural_t* proc,
int n_args,
const struct NSIParam_t* args);

struct NSIProcedural_t
{

unsigned nsi_version;
NSIProceduralUnload_t unload;
NSIProceduralExecute_t execute;

};

The structure returned by NSIProceduralLoad() contains information needed by the renderer to use the proce-
dural.

Note: The allocation of this structure is managed entirely from within the procedural and it will never be copied

24 Chapter 3. The Interface

NSI

or modified by the renderer.

Tip: This means that it is possible for a procedural to extend the structure (by over-allocating memory or sub-
classing, for example) in order to store any extra information that it might need later.

The nsi_version member must be set to NSI_VERSION (defined in nsi.h), so the renderer is able to determine
which version of s was used when compiling the procedural.

The function pointers types used in the definition are :

• NSIProceduralUnload_t is a function that cleans-up after the last execution of the procedural. This
is the dual of NSIProceduralLoad(). In addition to arguments ctx and report, also received by
NSIProceduralLoad(), it receives the description of the procedural returned by NSIProceduralLoad().

• NSIProceduralExecute_t is a function that contributes to the description of the scene by generating s API
calls. Since NSIProceduralExecute_t might be called multiple times in the same render, it’s important
that it uses the context ctx it receives as a argument to make its s calls, and not the context previously
received by NSIProceduralLoad(). It also receives any extra arguments sent to , or any extra attributes
set on a node. They are stored in the args array (of length n_args). NSIParam_t is described in .

Error Reporting

All functions of the procedural called by s receive a argument of type NSIReport_t. This is a pointer to a function
which should be used by the procedural to report errors or display any informational message.

typedef void (*NSIReport_t)(
NSIContext_t ctx, int level, const char* message);

It receives the current context, the error level (as described in) and the message to be displayed. This information
will be forwarded to any error handler attached to the current context, along with other regular renderer messages.
Using this, instead of a custom error reporting mechanism, will benefit the user by ensuring that all messages are
displayed in a consistent manner.

Preprocessor Macros

Some convenient C preprocessor macros are also defined in nsi_procedural.h :

NSI_PROCEDURAL_UNLOAD(name)

and

NSI_PROCEDURAL_EXECUTE(name)

declare functions of the specified name that match NSIProceduralUnload_t and NSIProceduralExecute_t,
respectively.

NSI_PROCEDURAL_LOAD

declares a NSIProceduralLoad function.

NSI_PROCEDURAL_INIT(proc, unload_fct, execute_fct)

initializes a NSIProcedural_t (passed as proc) using the addresses of the procedural’s main functions. It also
initializes proc.nsi_version.

So, a skeletal dynamic library procedural (that does nothing) could be implemented as in .

3.2. APIs 25

NSI

Please note, however, that the proc static variable in this example contains only constant values, which allows it
to be allocated as a static variable. In a more complex implementation, it could have been over-allocated (or sub-
classed, in C++) to hold additional, variable data1. In that case, it would have been better to allocate the descriptor
dynamically – and release it in NSI_PROCEDURAL_UNLOAD – so the procedural could be loaded independently from
multiple parallel renders, each using its own instance of the NSIProcedural_t descriptor.

1 #include "nsi_procedural.h"
2

3 NSI_PROCEDURAL_UNLOAD(min_unload)
4 {
5 }
6

7 NSI_PROCEDURAL_EXECUTE(min_execute)
8 {
9 }

10

11 NSI_PROCEDURAL_LOAD
12 {
13 static struct NSIProcedural_t proc;
14 NSI_PROCEDURAL_INIT(proc, min_unload, min_execute);
15 return &proc;
16 }

1 A good example of this is available in the 3Delight installation, in file gear.cpp.

26 Chapter 3. The Interface

CHAPTER

FOUR

NODES

The following sections describe available nodes in technical terms. Refer to the rendering guidelines for usage
details.

Table 1: Overview of nsi nodes
Node Function
root The scene’s root
global Global settings node
set Expresses relationships of groups of nodes
shader s shader or layer in a shader group
attributes Container for generic attributes (e.g. visibility)
transform Transformation to place objects in the scene
instances Specifies instances of other nodes
plane An infinite plane
mesh Polygonal mesh or subdivision surface
faceset Assign attributes to part of a mesh, curves or paticles.
curves Linear, b-spline and Catmull-Rom curves
particles Collection of particles
procedural Geometry to be loaded or generated in delayed fashion
volume A volume loaded from an OpenVDB file
environment Geometry type to define environment lighting
camera Set of nodes to create viewing cameras
outputdriver A target where to output rendered pixels
outputlayer Describes one render layer to be connected to an outputdriver node
screen Describes how the view from a camera node will be rasterized into an outputlayer

node

27

https://opensource.imageworks.com/?p=osl
https://www.openvdb.org

NSI

4.1 The Root Node

The root node is much like a transform node. With the particularity that it is the end connection for all renderable
scene elements. A node can exist in an nsi context without being connected to the root note but in that case it
won’t affect the render in any way. The root node has the reserved handle name .root and doesn’t need to be
created using NSICreate. The root node has two defined attributes: objects and geometryattributes. Both
are explained under the transform node.

4.2 The Global Node

This node contains various global settings for a particular nsi context. Note that these attributes are for the most
case implementation specific.

This node has the reserved handle name .global and does not need to be created using NSICreate. The following
attributes are recognized by 3Delight:

Table 2: global node optional attributes
Name Type Description/Values
numberofthreads
threads.count (!)

integer Specifies the total number of threads to use for a particular render:
• A value of 0 lets the render engine choose an optimal thread

value. This is is the default behaviour.
• Any positive value directly sets the total number of render

threads.
• A negative value will start as many threads as optimal plus

the specified value. This allows for an easy way to to de-
crease the total number of render threads.

renderatlowpriority
priority.low (!)

integer If set to 1, start the render with a lower process priority. This
can be useful if there are other applications that must run during
rendering.

texturememory
texture.memory (!)

integer Specifies the approximate maximum memory size, in megabytes,
the renderer will allocate to accelerate texture access.

bucketorder
bucket.order (!)

string Specifies in what order the buckets are rendered. The available
values are:
horizontal Row by row, left to right and top to bottom.

This is the default.
vertical Column by column, top to bottom and left

to right.
zigzag Row by row, left to right on even rows and

right to left on odd rows.
spiral In a clockwise spiral from the centre of the

image.
circle In concentric circles from the centre of the

image.
frame integer Provides a frame number to be used as a seed for the sampling

pattern. See the screen node.
lightcache integer

(1)
Controls use of the renderer’s light cache. Set this to 0 to switch
the cache off.
When this is switched on, each bucket is visited twice during ren-
dering.
WARNING: display drivers that do not request scanline order
need to make sure they handle this gracefully.

28 Chapter 4. Nodes

NSI

Table 3: global node optional network cache attributes
networkcache.size integer Specifies the maximum network cache size, in gigabytes (GB, not

GiB), the renderer will use to cache textures on a local drive to
accelerate data access.

networkcache.directory string Specifies the directory in which textures will be cached. A good
default value is /var/tmp/3DelightCache on Linux systems.

networkcache.write integer Enables caching for image write operations. This alleviates pres-
sure on networks by first rendering images to a local temporary
location and copying them to their final destination at the end of
the render. This replaces many small network writes by more ef-
ficient larger operations.

Table 4: global node optional attributes for licensing
license.server string Specifies the name or IP address of the license server to be used.
license.wait integer When no license is available for rendering, the renderer will wait

until a license is available if this attribute is set to 1, but will stop
immediately if it is set to 0. The latter setting is useful when man-
aging a renderfarm and other work could be scheduled instead.

license.hold integer By default, the renderer will get new licenses for every render and
release them once it is done. This can be undesirable if several
frames are rendered in sequence from the same process process.
If this option is set to 1, the licenses obtained for the first frame
are held until the last frame is finished.

4.2. The Global Node 29

NSI

Table 5: global node optional attributes governing ray tracing quality
maximumraydepth.diffuse
diffuse.ray.depth.max (!)

integer Specifies the maximum bounce depth a ray emitted from a diffuse
closure can reach. A depth of 1 specifies one additional bounce
compared to purely local illumination.

maximumraylength.
diffuse
diffuse.ray.length.max
(!)

double Limits the distance a ray emitted from a diffuse closure can travel.
Using a relatively low value for this attribute might improve per-
formance without significantly affecting the look of the resulting
image, as it restrains the extent of global illumination.
Setting this to a negative value disables the limitation.

maximumraydepth.
reflection
reflection.ray.depth.
max (!)

integer Specifies the maximum bounce depth a reflection/glossy/specular
ray can reach.
Setting reflection depth to 0 will only compute local illumination
resulting in only surfaces with an emission closure to appear in
reflections.

maximumraylength.
reflection
reflection.ray.length.
max (!)

double Limits the distance a reflection/glossy/specular ray can travel.
Setting this to a negative value disables the limitation.

maximumraydepth.
refraction
refraction.ray.depth.
max (!)

integer Specifies the maximum bounce depth a refraction ray can reach.
The default value of 4 allows light to shine through a properly
modeled object such as a glass.

maximumraylength.
refraction
refraction.ray.length.
max (!)

double Limits the distance a refraction ray can travel. Setting this to a
negative value disables the limitation.

maximumraydepth.hair
hair.ray.depth.max (!)

integer Specifies the maximum bounce depth a hair ray can reach.
Note that hair are akin to volumetric primitives and might need
elevated ray depth to properly capture the illumination.

maximumraylength.hair
hair.ray.length.max (!)

double Limits the distance a hair ray can travel. Setting this to a negative
value disables the limitation.

maximumraydepth.volume
volume.ray.depth.max (!)

integer Specifies the maximum bounce depth a volume ray can reach.

maximumraylength.volume
volume.ray.length.max (!)

double Limits the distance a volume ray can travel. Setting this to a neg-
ative value disables the limitation.

Table 6: global node optional attributes controlling overall image quality
quality.shadingsamples
shading.samples (!)

integer Controls the quality of BSDF sampling. Larger values give less
visible noise.

quality.volumesamples
volume.samples (!)

integer Controls the quality of volume sampling. Larger values give less
visible noise.

show.displacement
shading.displacement (!)

integer When set to 1, enables displacement shading. Otherwise, it must
be set to 0 to ignore any displacement shader in the scene.

show.atmosphere
shading.atmosphere (!)

integer When set to 1, enables atmosphere shader(s). Otherwise, it must
be set to 0 to ignore any atmosphere shader in the scene.

show.multiplescattering
shading.
multiplescattering
(!)

double This is a multiplier on the multiple scattering of VDB nodes. This
parameter is useful to obtain faster draft renders by lowering the
value below 1. The range is 0 to 1.

show.osl.subsurface
shading.osl.subsurface
(!)

integer When set to 1, enables the subsurface() s closure. Otherwise,
it must be set to 0, which will ignore this closure in s shaders.

For anti-aliasing quality see the screen node.

30 Chapter 4. Nodes

https://www.3delight.com/documentation/display/3DSP/3Delight's+OSL+Support
https://www.3delight.com/documentation/display/3DSP/3Delight's+OSL+Support
https://www.3delight.com/documentation/display/3DSP/3Delight's+OSL+Support
https://opensource.imageworks.com/?p=osl
https://www.3delight.com/documentation/display/3DSP/3Delight's+OSL+Support
https://www.3delight.com/documentation/display/3DSP/3Delight's+OSL+Support
https://opensource.imageworks.com/?p=osl

NSI

Table 7: global node optional attributes for statistics
Name | Type | Description/Values
statistics.progress integer When set to 1, prints rendering progress as a percentage of com-

pleted pixels.
statistics.filename string Full path of the file where rendering statistics will be written. An

empty string will write statistics to standard output. The name
null will not output statistics.

4.3 The Set Node

This node can be used to express relationships between objects.

An example is to connect many lights to such a node to create a light set and then to connect this node to an
outputlayer’s lightset attribute (see also light layers).

It has the following attributes:

Table 8: set node optional attributes
Name Type Description/Values
members
member (!)

«con-
nec-
tion(s)»

This connection accepts all nodes that are members of the set.

4.4 The Plane Node

This node represents an infinite plane, centered at the origin and pointing towards Z+. It has no required attributes.
The UV coordinates are defined as the X and Y coordinates of the plane.

4.5 The Mesh Node

This node represents a polygon mesh or a subdivision surface. It has the following required attributes:

Table 9: mesh node required attributes
Name Type Description/Values
P point The positions of the object’s vertices. Typically, this attribute will

be indexed through a P.indices attribute.
nvertices
vertex.count (!)
face.vertex.count (!)

integer The number of vertices for each face of the mesh. The number of
values for this attribute specifies total face number (unless nholes
is defined).

To render a mesh as a subdivision surface, at least the subdivision.scheme argument must be set. When ren-
dering as a subdvision surface, the mesh node accepts these optionalattributes:

4.3. The Set Node 31

NSI

Table 10: mesh node as subdivision surface optional attributes
Name Type Description/Values
subdivision.scheme string A value of "catmull-clark" will cause the mesh to render as a

Catmull-Clark subdivision surface.
subdivision.
cornervertices
subdivision.corner.
index (!)

integer A list of vertices which are sharp corners. The values are indices
into the P attribute, like P.indices.

subdivision.
cornersharpness
subdivision.corner.
sharpness (!)

float The sharpness of each specified sharp corner. It must have a value
for each value given in subdivision.cornervertices.

subdivision.
smoothcreasecorners
subdivision.corner.
automatic (!)

integer This tag requires a single integer argument with a value of 1 or 0
indicating whether or not the surface uses enhanced subdivision
rules on vertices where more than two creased edges meet.
With a value of 1 (the default) the vertex is subdivided using
an extended crease vertex subdivision rule which yields a smooth
crease. With a value of 0 the surface uses enhanced subdivision
rules where a vertex becomes a sharp corner when it has more
than two incoming creased edges.
Note that sharp corners can still be explicitly requested using
the subdivision.corner.index & subdivision.corner.
sharpness tags.

subdivision.
creasevertices
subdivision.crease.
index (!)

integer A list of crease edges. Each edge is specified as a pair of indices
into the P attribute, like P.indices.

subdivision.
creasesharpness
subdivision.crease.
sharpness (!)

float The sharpness of each specified crease. It must have a value for
each pair of values given in subdivision.creasevertices.

The mesh node also has these optional attributes:

Table 11: mesh node optional attributes
Name Type Description/Values
nholes
hole.count (!)

integer The number of holes in the polygons.
When this attribute is defined, the total number of faces in the
mesh is defined by the number of values for nholes rather than
for nvertices. For each face, there should be (nholes + 1) val-
ues in nvertices: the respective first value specifies the number
of vertices on the outside perimeter of the face, while additional
values describe the number of vertices on perimeters of holes in
the face.
The example below shows the definition of a polygon mesh con-
sisting of three square faces, with one triangular hole in the first
one and square holes in the second one.

clockwisewinding
clockwise (!)

integer A value of 1 specifies that polygons with clockwise winding order
are front facing.
The default is 0, making counterclockwise polygons front facing.

Below is a sample s stream snippet showing the definition of a mesh with holes.

1 Create "holey" "mesh"
2 SetAttribute "holey"

(continues on next page)

32 Chapter 4. Nodes

NSI

(continued from previous page)

3 "nholes" "int" 3 [1 2 0]
4 "nvertices" "int" 6 [
5 4 3 # Square with 1 triangular hole
6 4 4 4 # Square with 2 square holes
7 4] # Square with no hole
8 "P" "point" 23 [
9 0 0 0 3 0 0 3 3 0 0 3 0

10 1 1 0 2 1 0 1 2 0
11

12 4 0 0 9 0 0 9 3 0 4 3 0
13 5 1 0 6 1 0 6 2 0 5 2 0
14 7 1 0 8 1 0 8 2 0 7 2 0
15

16 10 0 0 13 0 0 13 3 0 10 3 0]

4.6 The Faceset Node

This node is used to provide a way to attach attributes to parts of another geometric primitive, such as faces of a
mesh, curves or particles. It has the following attributes:

Table 12: faceset node attributes
Name Type Description/Values
faces
face.index (!)

integer A list of indices of faces. It identifies which faces of the original
geometry will be part of this face set.

1 Create "subdiv" "mesh"
2 SetAttribute "subdiv"
3 "nvertices" "int" 4 [4 4 4 4]
4 "P" "point" 9 [
5 0 0 0 1 0 0 2 0 0
6 0 1 0 1 1 0 2 1 0
7 0 2 0 1 2 0 2 2 2]
8 "P.indices" "int" 16 [
9 0 1 4 3 2 3 5 4 3 4 7 6 4 5 8 7]

10 "subdivision.scheme" "string" 1 "catmull-clark"
11

12 Create "set1" "faceset"
13 SetAttribute "set1"
14 "faces" "int" 2 [0 3]
15 Connect "set1" "" "subdiv" "facesets"
16

17 Connect "attributes1" "" "subdiv" "geometryattributes"
18 Connect "attributes2" "" "set1" "geometryattributes"

4.6. The Faceset Node 33

NSI

4.7 The Curves Node

This node represents a group of curves. It has the following required attributes:

Table 13: curves node required attributes
Name Type Description/Values
nverts
vertex.count (!)

integer The number of vertices for each curve. This must be at least 4 for
cubic curves and 2 for linear curves. There can be either a single
value or one value per curve.

P point The positions of the curve vertices. The number of values pro-
vided, divided by nvertices, gives the number of curves which
will be rendered.

width float The width of the curves.

It also has these optional attributes:

Table 14: curves node optional attributes
Name Type Description/Values
basis string The basis functions used for curve interpolation. Possible choices

are:
b-spline B-spline interpolation.
catmull-rom Catmull-Rom interpolation. This is the

default value.
linear Linear interpolation.
hobby (!) Hobby interpolation.

N normal The presence of a normal indicates that each curve is to be ren-
dered as an oriented ribbon. The orientation of each ribbon is de-
fined by the provided normal which can be constant, a per-curve
or a per-vertex attribute. Each ribbon is assumed to always face
the camera if a normal is not provided.

extrapolate integer By default, when this is set to 0, cubic curves will not be drawn
to their end vertices as the basis functions require an extra vertex
to define the curve. If this attribute is set to 1, an extra vertex is
automatically extrapolated so the curves reach their end vertices,
as with linear interpolation.

Attributes may also have a single value, one value per curve, one value per vertex or one value per vertex of a single
curve, reused for all curves. Attributes which fall in that last category must always specify NSIParamPerVertex.

Note: A single curve is considered a face as far as use of NSIParamPerFace is concerned. See also the faceset
node.

4.8 The Particles Node

This geometry node represents a collection of tiny particles. Particles are represented by either a disk or a sphere.
This primitive is not suitable to render large particles as these should be represented by other means (e.g. instanc-
ing).

34 Chapter 4. Nodes

NSI

Table 15: particles node required attributes
Name Type Description/Values
P point The center of each particle.
width float The width of each particle. It can be specified for the entire par-

ticles node (only one value provided), per-particle or indirectly
through a width.indices attribute.

It also has these optional attributes:

Table 16: particles node optional attributes
N normal The presence of a normal indicates that each particle is to be ren-

dered as an oriented disk. The orientation of each disk is defined
by the provided normal which can be constant or a per-particle
attribute. Each particle is assumed to be a sphere if a normal is
not provided.

id integer This attribute has to be the same length as P. It assigns a unique
identifier to each particle which must be constant throughout the
entire shutter range. Its presence is necessary in the case where
particles are motion blurred and some of them could appear or
disappear during the motion interval. Having such identifiers al-
lows the renderer to properly render such transient particles. This
implies that the number of id’s might vary for each time step of a
motion-blurred particle cloud so the use of is mandatory by defi-
nition.

4.9 The Procedural Node

This node acts as a proxy for geometry that could be defined at a later time than the node’s definition, using a
procedural supported by . Since the procedural is evaluated in complete isolation from the rest of the scene, it can
be done either lazily (depending on its boundingbox attribute) or in parallel with other procedural nodes.

The procedural node supports, as its attributes, all the arguments of the NSIEvaluate API call, meaning that pro-
cedural types accepted by that api call (s archives, dynamic libraries, Lua scripts) are also supported by this node.
Those attributes are used to call a procedural that is expected to define a sub-scene, which has to be independent
from the other nodes in the scene. The procedural node will act as the sub-scene’s local root and, as such, also
supports all the attributes of a regular node. In order to connect the nodes it creates to the sub-scene’s root, the
procedural simply has to connect them to the regular .root.

In the context of an interactive render, the procedural will be executed again after the node’s attributes have been
edited. All nodes previously connected by the procedural to the sub-scene’s root will be deleted automatically
before the procedural’s re-execution.

Additionally, this node has the following optional attribute :

Table 17: procedural node optional attribute
Name Type Description/Values
boundingbox point[2] Specifies a bounding box for the geometry where

boundingbox[0] and boundingbox[1] correspond, re-
spectively, to the ‘minimum’ and the ‘maximum’ corners of the
box.

4.9. The Procedural Node 35

NSI

4.10 The Environment Node

This geometry node defines a sphere of infinite radius. Its only purpose is to render environment lights, solar lights
and directional lights; lights which cannot be efficiently modeled using area lights. In practical terms, this node is
no different than a geometry node with the exception of shader execution semantics: there is no surface position P,
only a direction I (refer to for more practical details). The following optional node attribute is recognized:

Table 18: environment node optional attribute
Name Type Description/Values
angle double Specifies the cone angle representing the region of the sphere to

be sampled.
The angle is measured around the Z+ axis. If the angle is set to
0, the environment describes a directional light.
See the guidelines for more information on about how to specify
light sources.

Tip: To position the environment dome one must connect the node to a transform node and apply the desired
rotation(s).

4.11 The Shader Node

This node represents an s shader, also called layer when part of a shader group. It has the following required
attribute:

Table 19: shader node attributes
Name Type Description/Values
shaderfilename string This is the name of the file which contains the shader’s compiled

code.
shaderobject string This contains the complete compiled shader code. It allows spec-

ifying shaders without going through files.

All other attributes on this node are considered arguments of the shader. They may either be given values or
connected to attributes of other shader nodes to build shader networks. s shader networks must form acyclic
graphs or they will be rejected. Refer to the guidelines for instructions on s network creation and usage.

4.12 The Attributes Node

This node is a container for various geometry related rendering attributes that are not intrinsic to a particular node
(for example, one can’t set the topology of a polygonal mesh using this attributes node). Instances of this node must
be connected to the geometryattributes attribute of either geometric primitives or nodes (to build). Attribute
values are gathered along the path starting from the geometric primitive, through all the transform nodes it is
connected to, until the is reached.

When an attribute is defined multiple times along this path, the definition with the highest priority is selected. In
case of conflicting priorities, the definition that is the closest to the geometric primitive (i.e. the furthest from the
root) is selected. Connections (for shaders, essentially) can also be assigned priorities, which are used in the same
way as for regular attributes. Multiple attributes nodes can be connected to the same geometry or transform nodes
(e.g. one attributes node can set object visibility and another can set the surface shader) and will all be considered.

This node has the following attributes:

36 Chapter 4. Nodes

https://opensource.imageworks.com/?p=osl
https://opensource.imageworks.com/?p=osl
https://opensource.imageworks.com/?p=osl

NSI

Table 20: attributes node attributes
Name Type Description/Values
surfaceshader
shader.surface (!)

«con-
nec-
tion»

The shader node which will be used to shade the surface is con-
nected to this attribute. A priority (useful for overriding a shader
from higher in the scene graph) can be specified by setting the
priority attribute of the connection itself.

displacementshader
shader.displacement (!)

«con-
nec-
tion»

The shader node which will be used to displace the surface is con-
nected to this attribute. A priority (useful for overriding a shader
from higher in the scene graph) can be specified by setting the
priority attribute of the connection itself.

volumeshader
shader.volume (!)

«con-
nec-
tion»

The shader node which will be used to shade the volume inside
the primitive is connected to this attribute.

ATTR.priority integer Sets the priority of attribute ATTRwhen gathering attributes in the
scene hierarchy.

visibility.camera
visibility.diffuse
visibility.hair
visibility.reflection
visibility.refraction
visibility.shadow
visibility.specular
visibility.volume

integer These attributes set visibility for each ray type specified in s.
The same effect could be achieved using shader code (using the
raytype() function) but it is much faster to filter intersections
at trace time. A value of 1 makes the object visible to the corre-
sponding ray type, while 0 makes it invisible.

visibility integer This attribute sets the default visibility for all ray types. When
visibility is set both per ray type and with this default visibility,
the attribute with the highest priority is used. If their priority is
the same, the more specific attribute (i.e. per ray type) is used.

matte integer If this attribute is set to 1, the object becomes a matte for camera
rays. Its transparency is used to control the matte opacity and all
other shading components are ignored.

regularemission
emission.regular (!)

integer If this is set to 1, closures not used with quantize() will use
emission from the objects affected by the attribute. If set to 0,
they will not.

quantizedemission
emission.quantized (!)

integer If this is set to 1, quantized closures will use emission from the
objects affected by the attribute. If set to 0, they will not.

bounds
boundary

«con-
nec-
tion»

When a geometry node (usually a mesh node) is connected to this
attribute, it will be used to restrict the effect of the attributes node,
which will apply only inside the volume defined by the connected
geometry object.

4.13 The Transform Node

This node represents a geometric transformation. Transform nodes can be chained together to express transform
concatenation, hierarchies and instances.

A transform node also accepts attributes to implement hierarchical attribute assignment and overrides.

It has the following attributes:

4.13. The Transform Node 37

https://opensource.imageworks.com/?p=osl

NSI

Table 21: transform node attributes
Name Type Description/Values
tranformationmatrix
matrix (!)

dou-
blema-
trix

This is a 4×4 matrix which describes the node’s transformation.
Matrices in s post-multiply so column vectors are of the form:

w12 w13 0
w21 w22 w23

0
w31 w32 w33

0
Tx Ty Tz
1

objects

object (!) «connection(s)» This is where the transformed objects are connected to. This includes geometry
nodes, other transform nodes and camera nodes.

geometryattributes

attribute (!) «connection(s)» This is where attributes nodes may be connected to affect any geometry trans-
formed by this node.

See the guidelines on attributes and instancing for explanations on how this connection is used.

4.14 The Instances Node

This node is an efficient way to specify a large number of instances. It has the following attributes:

Table 22: instances node attributes
Name Type Description/Values
sourcemodels
object (!)

«con-
nec-
tion(s)»

The instanced models should connect to this attribute.
Connections must have an integer index attribute if there are sev-
eral, so the models effectively form an ordered list.

transformationmatrices
matrix (!)

dou-
blema-
trix

A transformation matrix for each instance.

Table 23: instances node optional attributes
modelindices
object.index (!)

integer An optional model selector for each instance.

disabledinstances
disable.index (!)

[inte-
ger;
. . .]

An optional list of indices of instances which are not to be ren-
dered.

38 Chapter 4. Nodes

NSI

4.15 The Outputdriver Node

An output driver defines how an image is transferred to an output destination. The destination could be a file
(e.g. “exr” output driver), frame buffer or a memory address. It can be connected to the outputdrivers attribute
of an node. It has the following attributes:

Table 24: outputdriver node attributes
Name Type Description/Values
drivername string This is the name of the driver to use. The api of the driver is

implementation specific and is not covered by this documentation.
imagefilename string Full path to a file for a file-based output driver or some meaningful

identifier depending on the output driver.
embedstatistics integer A value of 1 specifies that statistics will be embedded into the

image file.

Any extra attributes are also forwarded to the output driver which may interpret them however it wishes.

4.16 The Outputlayer Node

This node describes one specific layer of render output data. It can be connected to the outputlayers attribute
of a screen node. It has the following attributes:

Table 25: outputlayer node attributes
Name TypeDescription/Values
variablenamestringThis is the name of a variable to output.
variablesourcestringIndicates where the variable to be output is read from. Possible values are:

shadercomputed by a shader and output through an s closure s (such a outputvariable()
or debug()) or the Ci global variable.

attributeretrieved directly from an attribute with a matching name attached to a geometric prim-
itive.

builtingenerated automatically by the renderer (e.g. z, alpha N.camera, P.world).
layername stringThis will be name of the layer as written by the output driver. For example, if the output driver

writes to an EXR file then this will be the name of the layer inside that file.
scalarformatstringSpecifies the format in which data will be encoded (quantized) prior to passing it to the output

driver. Possible values are:
int8 Signed 8-bit integer.
uint8 Unsigned 8-bit integer.
int16 Signed 16-bit integer.
uint16Unsigned 16-bit integer.
int32 Signed 32-bit integer.
half IEEE 754 half-precision binary floating point (binary16).
float IEEE 754 single-precision binary floating point (binary32).

layertype stringSpecifies the type of data that will be written to the layer. Possible values are:
scalarA single quantity. Useful for opacity (alpha) or depth (Z) information.
color A 3-component color.
vectorA 3D point or vector. This will help differentiate the data from a color in further pro-

cessing.
quad A sequence of 4 values, where the fourth value is not an alpha channel.
Each component of those types is stored according to the scalarformat attribute set on the
same outputlayer node.

colorprofilestringThe name of an OCIO color profile to apply to rendered image data prior to quantization.
continues on next page

4.15. The Outputdriver Node 39

https://opensource.imageworks.com/?p=osl

NSI

Table 25 – continued from previous page
Name TypeDescription/Values
dithering in-

te-
ger

If set to 1, dithering is applied to integer scalars. Otherwise, it must be set to 0.
It is sometimes desirable to turn off dithering, for example, when outputting object IDs.

withalpha in-
te-
ger

If set to 1, an alpha channel is included in the output layer. Otherwise, it must be set to 0.

sortkey in-
te-
ger

This attribute is used as a sorting key when ordering multiple output layer nodes connected to
the same output driver node. Layers with the lowest sortkey attribute appear first.

lightset «con-
nec-
tion(s)»

This connection accepts either light sources or set nodes to which lights are connected. In this
case only listed lights will affect the render of the output layer. If nothing is connected to this
attribute then all lights are rendered.

outputdrivers
outputdriver
(!)

«con-
nec-
tion(s)»

This connection accepts nodes to which the layer’s image will be sent.

filter string
(blackmann-
harris)

The type of filter to use when reconstructing the final image from sub-pixel samples. Possible
values are:

• box
• triangle
• catmull-rom
• bessel
• gaussian
• sinc
• mitchell
• blackman-harris (default)
• zmin
• zmax
• cryptomattelayer%u Take two values from those present in each pixel’s samples.

filterwidthdou-
ble

Diameter in pixels of the reconstruction filter. It is ignored when filter is box or zmin.
Filter Suggested Width
box 1.0
triangle 2.0
catmull-rom 4.0
bessel 6.49
gaussian 2.0–2.5
sinc 4.0–8.0
mitchell 4.0–5.0
blackman-harris 3.0–4.0

backgroundvaluefloatThe value given to pixels where nothing is rendered.

Any extra attributes are also forwarded to the output driver which may interpret them however it wishes.

40 Chapter 4. Nodes

NSI

4.17 The Screen Node

This node describes how the view from a camera node will be rasterized into an output layer node. It can be
connected to the screens attribute of a camera node.

For an exmplanation of coordinate systems/spaces mentioned below, e.g. NDC, screen, etc., please refer to the
Open Shading Language specification

Table 26: screen node attributes
Name Type Description/Values
outputlayers
outputlayer (!)

«connec-
tion(s)»

This connection accepts nodes
which will receive a rendered
image of the scene as seen by the
camera.

resolution integer[2] Horizontal and vertical resolution
of the rendered image, in pixels.

oversampling integer The total number of samples (i.e.
camera rays) to be computed for
each pixel in the image.

crop float[2][2] The region of the image to be ren-
dered. It is defined by a two 2D co-
ordinates. Each represents a point
in NDC space:

• Top-left corner of the crop
region.

• Bottom-right corner of
the crop region.

prioritywindow integer[2][2] For progressive renders, this is the
region of the image to be rendered
first. It is defined by two coordi-
nates. Each represents a pixel po-
sition in raster space:

• Top-left corner of the high
priority region.

• Bottom-right corner of
the high priority region.

screenwindow double[2][2] Specifies the screen space region
to be rendered. It is defined by
two coordinates. Each represents a
point in screen space:

• Top-left corner of the re-
gion.

• Bottom-right corner of
the region.

Note that the default screen win-
dow is set implicitely by the frame
aspect ratio:

-1

,

[︀
𝑓 1

]︀
for f=

𝑥𝑟𝑒𝑠

𝑦𝑟𝑒𝑠

pixelaspectratio float (1) Ratio of the physical width to the height of a single pixel. A value of 1 corresponds
to square pixels.

4.17. The Screen Node 41

https://github.com/imageworks/OpenShadingLanguage/raw/master/src/doc/osl-languagespec.pdf

NSI

staticsamplingpattern integer (0) This controls whether or not the sampling pattern used to produce the
image changes for every frame.

A nonzero value will cause the same pattern to be used for all frames. A value of 0 will cause the pattern to
change with the frame attribute of the global node.

4.18 The Volume Node

This node represents a volumetric object defined by OpenVDB data. It has the following attributes:

Table 27: volume node attributes
Name Type Description/Values
vdbfilename
filename (!)

string The path to an OpenVDB file with the volumetric data.

colorgrid string The name of the OpenVDB grid to use as a scattering color mul-
tiplier for the volume shader.

densitygrid string The name of the OpenVDB grid to use as volume density for the
volume shader.

emissionintensitygrid string The name of the OpenVDB grid to use as emission intensity for
the volume shader.

temperaturegrid string The name of the OpenVDB grid to use as temperature for the vol-
ume shader.

velocitygrid double The name of the OpenVDB grid to use as motion vectors. This
can also name the first of three scalar grids (i.e. “velocityX”).

velocityscale double
(1)

A scaling factor applied to the motion vectors.

4.19 Camera Nodes

All camera nodes share a set of common attributes. These are listed below.

42 Chapter 4. Nodes

https:/www.openvdb.org/

NSI

Table 28: camera nodes shared attributes
Name Type Description/Values
screens
screen (!)

«con-
nec-
tion(s)»

This connection accepts nodes which will rasterize an image of
the scene as seen by the camera. Refer to for more information.

shutterrange dou-
ble[2]

Time interval during which the camera shutter is at least partially
open. It is defined by a list of exactly two values:

• Time at which the shutter starts opening.
• Time at which the shutter finishes closing.

shutteropening dou-
ble[2]

A normalized time interval indicating the time at which the shutter
is fully open (a) and the time at which the shutter starts to close
(b). These two values define the top part of a trapezoid filter.
This feature simulates a mechanical shutter on which open
and close movements are not instantaneous. Below is
an image showing the geometry of such a trapezoid filter.

Fig. 1: An example shutter opening configuration with 𝑎 = 1
3 and

𝑏 = 2
3 .

clippingrange dou-
ble[2]

Distance of the near and far clipping planes from the camera. It’s
defined by a list of exactly two values:

• Distance to the near clipping plane, in front of which scene
objects are clipped.

• Distance to the far clipping plane, behind which scene ob-
jects are clipped.

lensshader «con-
nec-
tion»

An s shader through which camera rays get sent. See lens shaders.

4.19.1 The Orthographiccamera Node

This node defines an orthographic camera with a view direction towards the Z− axis. This camera has no specific
attributes.

4.19. Camera Nodes 43

https://opensource.imageworks.com/?p=osl

NSI

4.19.2 The Perspectivecamera Node

This node defines a perspective camera. The canonical camera is viewing in the direction of the Z− axis. The node
is usually connected into a node for camera placement. It has the following attributes:

Table 29: perspective node attributes
Name Type Description/Values
fov float The field of view angle, in degrees.
depthoffield.enable integer

(0)
Enables depth of field effect for this camera.

depthoffield.fstop double Relative aperture of the camera.
depthoffield.
focallength

double Vertical focal length, in scene units, of the camera lens.

depthoffield.
focallengthratio

double
(1.0)

Ratio of vertical focal length to horizontal focal length. This is
the squeeze ratio of an anamorphic lens.

depthoffield.
focaldistance

double Distance, in scene units, in front of the camera at which objects
will be in focus.

depthoffield.aperture.
enable

integer
(0)

By default, the renderer simulates a circular aperture for depth of
field. Enable this feature to simulate aperture “blades” as on a
real camera. This feature affects the look in out-of-focus regions
of the image.

depthoffield.aperture.
sides

integer
(5)

Number of sides of the camera’s aperture. The mininum number
of sides is 3.

depthoffield.aperture.
angle

double
(0)

A rotation angle (in degrees) to be applied to the camera’s aper-
ture, in the image plane.

Table 30: perspective node extra attributes
depthoffield.aperture.
roundness

double
(0)

This shapes the sides of the polygon When set to 0, the aperture
is polygon with flat sides. When set to 1, the aperture is a perfect
circle. When set to -1, the aperture sides curve inwards.

depthoffield.aperture.
density

double
(0)

The slope of the aperture’s density. A value of 0 gives uniform
density. Negative values, up to -1, make the aperture brighter
near the center. Positive values, up to 1, make it brighter near the
edge.

depthoffield.aperture.
aspectratio

double
(1)

Circularity of the aperture. This can be used to simulate anamor-
phic lenses.

4.19.3 The Fisheyecamera Node

Fish eye cameras are useful for a multitude of applications (e.g. virtual reality). This node accepts these attributes:

Table 31: fisheye camera node attributes
Name Type Description/Values
fov float The field of view angle, in degrees.
mapping string

(equidistant)
Defines one of the supported fisheye mapping functions. Possible
values are:
equidistant Maintains angular distances.
equisolidangle Every pixel in the image covers the same

solid angle.
orthographic Maintains planar illuminance. This map-

ping is limited to a 180 field of view.
stereographic Maintains angles throughout the image.

Note that stereographic mapping fails to
work with field of views close to 360 de-
grees.

44 Chapter 4. Nodes

NSI

4.19.4 The Cylindricalcamera Node

This node specifies a cylindrical projection camera and has the following attibutes:

Table 32: cylindrical camera nodes shared attributes
Name Type Description/Values
fov float

(90)
Specifies the vertical field of view, in degrees. The default value
is 90.

horizontalfov
fov.horizontal (!)

float
(360)

Specifies the horizontal field of view, in degrees. The default
value is 360.

eyeoffset float This allows to render stereoscopic cylindrical images by specify-
ing an eye offset

4.19.5 The Sphericalcamera Node

This node defines a spherical projection camera. This camera has no specific attributes.

4.19.6 Lens Shaders

A lens shader is an s network connected to a camera through the lensshader connection. Such shaders receive
the position and the direction of each tracer ray and can either change or completely discard the traced ray. This
allows to implement distortion maps and cut maps. The following shader variables are provided:

P — Contains ray’s origin.

I — Contains ray’s direction. Setting this variable to zero instructs the renderer not to trace the corresponding ray
sample.

time — The time at which the ray is sampled.

(u, v) — Coordinates, in screen space, of the ray being traced.

4.19. Camera Nodes 45

https://opensource.imageworks.com/?p=osl

NSI

46 Chapter 4. Nodes

CHAPTER

FIVE

SCRIPT OBJECTS

It is a design goal to provide an easy to use and flexible scripting language for s.

The Lua language has been selected for such a task because of its performance, lightness and features[#]_. A
flexible scripting interface greatly reduces the need to have API extensions.

For example, what is known as ‘conditional evaluation’ and ‘Ri filters’ in the RenderMan API are superseded by
the scripting features of s.

Note: Although they go hand in hand, scripting objects are not to be confused with the Lua binding.

The binding allows for calling s functions in Lua while scripting objects allow for scene inspection and decision
making in Lua. Script objects can make Lua binding calls to make modifications to the scene.

To be continued . . .

47

https://www.lua.org/

NSI

48 Chapter 5. Script Objects

CHAPTER

SIX

RENDERING GUIDELINES

6.1 Basic Scene Anatomy

output driver

output layer

screen

camera

transform

.root

material (osl)

attributes

geometry

transform

Fig. 1: The fundamental building blocks of an s
scene

A minimal (and useful) s scene graph contains the three fol-
lowing components:

1. Geometry linked to the .root node, usually through
a transform chain.

2. s materials linked to scene geometry through an at-
tributes node.

3. At least one output-
driver→outputlayer→screen→camera→.root
chain to describe a view and an output device.

The scene graph in shows a renderable scene with all the
necessary elements. Note how the connections always lead
to the .root node.

In this view, a node with no output connections is not relevant
by definition and will be ignored.

Caution: For the scene to be visible, at least one of the
materials has to be emissive.

6.2 A Word – or Two – About At-
tributes

Those familiar with the RenderMan standard will remem-
ber the various ways to attach information to elements of
the scene (standard attributes, user attributes, primitive vari-
ables, construction parameters). E.g parameters passed to
RenderMan Interface calls to build certain objects. For ex-
ample, knot vectors passed to RiNuPatch().

In s things are simpler and all attributes are set through
the NSISetAttribute() mechanism. The only distinc-
tion is that some attributes are required (intrinsic attributes)
and some are optional: a mesh node needs to have P and
nvertices defined — otherwise the geometry is invalid.

49

https://opensource.imageworks.com/?p=osl

NSI

attribute
override

attribute
inheritance

transform

.root

geometry

transform

geometry

transform

geometry

transform

plastic

attributes metal

attributes

Fig. 2: Attribute inheritance and override

50 Chapter 6. Rendering Guidelines

NSI

Note: In this documentation, all intrinsic attributes are documented at the beginning of each section describing a
particular node.

In s shaders, attributes are accessed using the
getattribute() function and this is the only way to
access attributes in |nsi|. Having one way to set and to access attributes makes things simpler (a design goal) and
allows for extra flexibility (another design goal). shows two features of attribute assignment in s:

Attribute inheritance Attributes attached at some parent (in this case, a metal material) affect geometry down-
stream.

Attribute override It is possible to override attributes for a specific geometry by attaching them to a transform
node directly upstream (the plastic material overrides metal upstream).

Note that any non-intrinsic attribute can be inherited and overridden, including vertex attributes such as texture
coordinates.

6.3 Instancing

Instancing in s is naturally performed by connecting a geometry to more than one transform (connecting a geometry
node into a transform.objects attribute).

The above figure shows a simple scene with a geometry instanced three times. The scene also demonstrates how
to override an attribute for one particular geometry instance, an operation very similar to what we have seen in the
attributes section. Note that transforms can also be instanced and this allows for instances of instances using the
same semantics.

6.4 Creating s Networks

The semantics used to create s networks are the same as for scene creation. Each shader node in the network
corresponds to a shader node which must be created using NSICreate. Each shader node has implicit attributes
corresponding to shader’s parameters and connection between said arguments is done using NSIConnect. Above
diagran depicts a simple s network connected to an attributes node.

Some observations:

• Both the source and destination attributes (passed to NSIConnect must be present and map to valid and
compatible shader parameters (Lines 21–23).

Note: There is an exception to this: any non-shader node can be connected to a string attribute of a
shader node. This will result in the non-shader node’s handle being used as the string’s value.

This behavior is useful when the shader needs to refer to another node, in a s call to transform() or
getattribute(), for example.

• There is no symbolic linking between shader arguments and geometry attributes (a.k.a. primvars). One has
to explicitly use the getattribute() s function to read attributes attached to geometry. In this is done in
the read_attribute node (Lines 11–14). Also see the section on attributes.

1 Create "ggx_metal" "shader"
2 SetAttribute "ggx"
3 "shaderfilename" "string" 1 ["ggx.oso"]
4

5 Create "noise" "shader"
6 SetAttribute "noise"

(continues on next page)

6.3. Instancing 51

https://opensource.imageworks.com/?p=osl
https://opensource.imageworks.com/?p=osl
nodes.html#node-shader
c-api.html#capi-nsicreate
c-api.html#capi-nsiconnect
https://opensource.imageworks.com/?p=osl
nodes.html#node-attributes
c-api.html#capi-nsiconnect
https://opensource.imageworks.com/?p=osl
https://opensource.imageworks.com/?p=osl

NSI

instance
attribute
override

transform

.root

geometry

transform transform transform

metal

attributes

plastic

attributes

Fig. 3: Instancing in s with attribute inheritance and per-instance attribute override

OSL network

ggx_metal
roughness
dirtlayer

attributes
.surfaceshader

read_attribute
attributename="st"

output

read_texture
texturename="dirt.exr"

uv
output

noise
frequency=1.0
lacunarity=2.0

output

Fig. 4: A simple s network connected to an attributes node

52 Chapter 6. Rendering Guidelines

https://opensource.imageworks.com/?p=osl

NSI

(continued from previous page)

7 "shaderfilename" "string" 1 ["simplenoise.oso"]
8 "frequency" "float" 1 [1.0]
9 "lacunarity" "float" 1 [2.0]

10

11 Create "read_attribute" "shader"
12 SetAttribute "read_attribute"
13 "shaderfilename" "string" 1 ["read_attributes.oso"]
14 "attributename" "string" 1 ["st"]
15

16 Create "read_texture" "shader"
17 SetAttribute "read_texture"
18 "shaderfilename" "string" 1 ["read_texture.oso"]
19 "texturename" "string" 1 ["dirt.exr"]
20

21 Connect "read_attribute" "output" "read_texture" "uv"
22 Connect "read_texture" "output" "ggx_metal" "dirtlayer"
23 Connect "noise" "output" "ggx_metal" "roughness"
24

25 # Connect the OSL network to an attribute node
26 Connect "ggx_metal" "Ci" "attr" "surfaceshader"

6.5 Lighting in the Nodal Scene Interface

hdrlight

attributes

environment

transform

.root

arealight

attributes

mesh

transform

spotlight

attributes

mesh

transform

Fig. 5: Creating lights in nsi

There are no special light
source nodes in s (al-
though the node, which
defines a sphere of infi-
nite radius, could be con-
sidered a light in prac-
tice).

Any scene geometry can
become a light source if
its surface shader pro-
duces an emission()
closure. Some opera-
tions on light sources,
such as light linking, are
done using more general
approaches.

Following is a quick
summary on how to
create different kinds of
light in s.

6.5. Lighting in the Nodal Scene Interface 53

https://www.3delight.com/documentation/display/3DSP/3Delight's+OSL+Support

NSI

6.5.1 Area Lights

Area lights are created
by attaching an emissive
surface material to ge-
ometry. Below is a sim-
ple s shader for such
lights (standard s emit-
ter).

Listing 1: Example
emitter for area lights

1 // Copyright␣
→˓(c) 2009-2010␣
→˓Sony Pictures␣
→˓Imageworks Inc.
→˓, et al. All␣
→˓Rights Reserved.

2 surface␣
→˓emitter ␣
→˓ [[string help␣
→˓= "Lambertian␣
→˓emitter␣
→˓material"]]

3 (
4 float␣

→˓power = 1 [[␣
→˓string help =␣
→˓"Total power of␣
→˓the light"]],

5 color␣
→˓Cs = 1 [[␣
→˓string help =␣
→˓"Base color"]])

6 {
7 // Because␣

→˓emission()␣
→˓expects␣
→˓a weight␣
→˓in radiance, we␣
→˓must convert by␣
→˓dividing

8 /
→˓/ the power (in␣
→˓Watts) by the␣
→˓surface area␣
→˓and the factor␣
→˓of PI implied by

9 // uniform␣
→˓emission over␣
→˓the hemisphere.
→˓ N.B.:␣
→˓The total power␣
→˓is BEFORE Cs

10 // filters␣
→˓the color!

11 Ci = (power␣
→˓/ (M_PI *␣
→˓surfacearea()))␣
→˓*␣
→˓Cs * emission();

(continues on next page)

54 Chapter 6. Rendering Guidelines

https://opensource.imageworks.com/?p=osl
https://opensource.imageworks.com/?p=osl

NSI

(continued from previous page)

12 }

6.5.2 Spot and
Point Lights

Such lights are created
using an epsilon sized
geometry (a small disk,
a particle, etc.) and op-
tionally using extra arguments to the emission() closure.

Listing 2: An example OSL spot light shader

1 surface spotlight(
2 color i_color = color(1),
3 float intenstity = 1,
4 float coneAngle = 40,
5 float dropoff = 0,
6 float penumbraAngle = 0
7) {
8 color result = i_color * intenstity * M_PI;
9

10 // Cone and penumbra
11 float cosangle = dot(-normalize(I), normalize(N));
12 float coneangle = radians(coneAngle);
13 float penumbraangle = radians(penumbraAngle);
14

15 float coslimit = cos(coneangle / 2);
16 float cospen = cos((coneangle / 2) + penumbraangle);
17 float low = min(cospen, coslimit);
18 float high = max(cospen, coslimit);
19

20 result *= smoothstep(low, high, cosangle);
21

22 if (dropoff > 0) {
23 result *= clamp(pow(cosangle, 1 + dropoff),0,1);
24 }
25 Ci = result / surfacearea() * emission();
26 }

6.5.3 Directional and HDR Lights

Directional lights are created by using the node and setting the angle attribute to 0. HDR lights are also created
using the environment node, albeit with a 2 cone angle, and reading a high dynamic range texture in the attached
surface shader. Other directional constructs, such as solar lights, can also be obtained using the environment node.

Since the node defines a sphere of infinite radius any connected s shader must only rely on the I variable and
disregard P, as is shown below.

Listing 3: An example OSL shader to do HDR lighting

1 shader hdrlight(
2 string texturename = ""
3) {

(continues on next page)

6.5. Lighting in the Nodal Scene Interface 55

https://www.3delight.com/documentation/display/3DSP/3Delight's+OSL+Support
https://opensource.imageworks.com/?p=osl

NSI

(continued from previous page)

4 vector wi = transform("world", I);
5

6 float longitude = atan2(wi[0], wi[2]);
7 float latitude = asin(wi[1]);
8

9 float s = (longitude + M_PI) / M_2PI;
10 float t = (latitude + M_PI_2) / M_PI;
11

12 Ci = emission() * texture(texturename, s, t);
13 }

Note: Environment geometry is visible to camera rays by default so it will appear as a background in renders. To
disable this simply switch off camera visibility on the associated node.

6.6 Defining Output Drivers and Layers

output driver

output layer output layer output layer

screen

camera

transform

.root

Fig. 6: s graph showing the image output chain

s allows for a very flexible image output model. All the following operations are possible:

• Defining many outputs in the same render (e.g. many EXR outputs)

• Defining many output layers per output (e.g. multi-layer EXRs)

• Rendering different scene views per output layer (e.g. one pass stereo render)

• Rendering images of different resolutions from the same camera (e.g. two viewports using the same camera,
in an animation software)

depicts a s scene to create one file with three layers. In this case, all layers are saved to the same file and the render
is using one view. A more complex example is shown in : a left and right cameras are used to drive two file outputs,
each having two layers (Ci and Diffuse colors).

56 Chapter 6. Rendering Guidelines

NSI

left.exr

CiDiffuse

left screen

right.exr

CiDiffuse

right screen

left camera right camera

transformtransform

.root

Fig. 7: s graph for a stereo image output

6.7 Light Layers

The ability to render a certain set of lights per output layer has a formal workflow in s. One can use three methods
to define the lights used by a given output layer:

1. Connect the geometry defining lights directly to the outputlayer.lightset attribute

2. Create a set of lights using the set node and connect it into outputlayer.lightset

3. A combination of both 1 and 2

Above diagram a scene using method to create an output layer containing only illumination from two lights of the
scene. Note that if there are no lights or light sets connected to the lightset attribute then all lights are rendered.
The final output pixels contain the illumination from the considered lights on the specific surface variable specified
in outputlayer.variablename ().

6.8 Inter-Object Visibility

Some common rendering features are difficult to achieve using attributes and hierarchical tree structures. One such
example is inter-object visibility in a 3D scene. A special case of this feature is light linking which allows the artist
to select which objects a particular light illuminates, or not. Another classical example is a scene in which a ghost
character is invisible to camera rays but visible in a mirror.

In s such visibility relationships are implemented using cross-hierarchy connection between one object and another.
In the case of the mirror scene, one would first tag the character invisible using the attribute and then connect the
attribute node of the receiving object (mirror) to the visibility attribute of the source object (ghost) to override its
visibility status. Essentially, this “injects” a new value for the ghost visibility for rays coming from the mirror.

Above figure shows a scenario where both hierarchy attribute overrides and inter-object visibility are applied:

• The ghost transform has a visibility attribute set to 0 which makes the ghost invisible to all ray types

• The hat of the ghost has its own attribute with a visibility set to 1 which makes it visible to all ray types

• The mirror object has its own attributes node that is used to override the visibility of the ghost as seen from
the mirror. The nsi stream code to achieve that would look like this:

Connect "mirror_attribute" "" "ghost_attributes" "visibility"
"value" "int" 1 [1]
"priority" "int" 1 [2]

6.7. Light Layers 57

NSI

light sources

output chain

back light

transform

set

.root

fill light

transform

rim light

transform

output driver

output layer

screen

camera

output driver

output layer

transform

hat

transform

ghost

root

head mirror

transform

visibility 0

visibility 1

attributes

visibility=1
priority=2

Fig. 8: Visibility override, both hierarchically and inter-object

58 Chapter 6. Rendering Guidelines

NSI

Here, a priority of 2 has been set on the connection for documenting purposes, but it could have been omitted
since connections always override regular attributes of equivalent priority.

6.8. Inter-Object Visibility 59

NSI

60 Chapter 6. Rendering Guidelines

CHAPTER

SEVEN

COOKBOOK

The Nodal Scene Interface (NSI) is a simple yet expressive API to describe a scene to a renderer. From geometry
declaration, to instancing, to attribute inheritance and shader assignments, everything fits in 12 API calls. The
following recipes demonstrate how to achieve most common manipulations.

7.1 Geometry Creation

Creating geometry nodes is simple. The content of each node is filled using the NSISetAttribute call.

Listing 1: Geometry Creation

1 ## Polygonal meshes can be created minimally by specifying "P".
2 ## NSI's C++ API provides an easy interface to pass parameters to all NSI
3 ## API calls through the Args class.
4

5 Create "simple polygon" "mesh"
6 SetAttribute "simple polygon"
7 "P" "point" 1 [-1 1 0 1 1 0 1 -1 0 -1 -1 0]

Geometry Creation in C++

1 /*
2 Polygonal meshes can be created minimally by specifying "P".
3 NSI's C++ API provides an easy interface to pass parameters
4 to all NSI API calls through the Args class.
5 */
6 const char *k_poly_handle = "simple polygon"; /* avoids typos */
7

8 nsi.Create(k_poly_handle, "mesh");
9

10 NSI::ArgumentList mesh_args;
11 float points[3*4] = { -1, 1, 0, 1, 1, 0, 1, -1, 0, -1, -1, 0 };
12 mesh_args.Add(
13 NSI::Argument::New("P")
14 ->SetType(NSITypePoint)
15 ->SetCount(4)
16 ->SetValuePointer(points));
17 nsi.SetAttribute(k_poly_handle, mesh_args);

Specifying normals and other texture coordinates follows the same logic. Constant attributes can be declared in a
concise form too:

61

NSI

Listing 2: Adding constant attributes

1 SetAttribute "simple polygon"
2 "subdivision.scheme" "string" 1 ["catmull-clark"]

Adding constant attributes in C++

1 /** Turn our mesh into a subdivision surface */
2 nsi.SetAttribute(k_poly_handle,
3 NSI::CStringPArg("subdivision.scheme", "catmull-clark"));

7.2 Transforming Geometry

In NSI, a geometry is rendered only if connected to the scene’s root (which has the special handle “.root”). It is
possible to directly connect a geometry node (such as the simple polygon above) to scene’s root but it wouldn’t be
very useful. To place/instance a geometry anywhere in the 3D world a transform node is used as in the code snippet
below.

Listing 3: Adding constant attributes

1 Create "my translation" "transform"
2 Connect "translation" "" ".root" "objects"
3 Connect "simple polygon" "" "translation" "objects");
4

5 # Transalte 1 unit in Y
6 SetAttribute "my translation"
7 "transformationmatrix" "matrix" 1 [
8 1 0 0 0
9 0 1 0 0

10 0 0 1 0
11 0 1 0 1]

Adding constant attributes in C++

1 const char *k_instance1 = "my translation";
2

3 nsi.Create(k_instance1, "transform");
4 nsi.Connect(k_instance1, "", NSI_SCENE_ROOT, "objects");
5 nsi.Connect(k_poly_handle, "", k_instance1, "objects");
6

7 /*
8 Matrices in NSI are in double format to allow for greater
9 range and precision.

10 */
11 double trs[16] =
12 {
13 1., 0., 0., 0.,
14 0., 1., 0., 0.,
15 0., 0., 1., 0.,
16 0., 1., 0., 1. /* transalte 1 unit in Y */
17 };
18

19 nsi.SetAttribute(k_instance1,
20 NSI::DoubleMatrixArg("transformationmatrix", trs));

62 Chapter 7. Cookbook

NSI

Instancing is as simple as connecting a geometry to different attributes. Instances of instances do work as expected
too.

1 const char *k_instance2 = "another translation";
2 trs[13] += 1.0; /* translate in Y+ */
3

4 nsi.Create(k_instance2, "transform");
5 nsi.Connect(k_poly_handle, "", k_instance2, "objects");
6 nsi.Connect(k_instance2, "", NSI_SCENE_ROOT, "objects");
7

8 /* We know have two instances of the same polygon in the scene */

7.2. Transforming Geometry 63

NSI

64 Chapter 7. Cookbook

CHAPTER

EIGHT

ACKNOWLEDGEMENTS

Many thanks to John Haddon, Daniel Dresser, David Minor, Moritz Mœller and Gregory Ducatel for initiating
the first discussions and encouraging us to design a new scene description API. Bo Zhou and Paolo Berto helped
immensely with plug-in design which ultimately led to improvements in s (e.g. adoption of the screen node).
Jordan Thistlewood opened the way for the first integration of s into a commercial plug-in. Stefan Habel did a
thorough proofreading of the entire document and gave many suggestions.

The s logo was designed by Paolo Berto.

65

NSI

66 Chapter 8. Acknowledgements

CHAPTER

NINE

INDEX

67

NSI

68 Chapter 9. Index

INDEX

Symbols
.root node, 27, 49

A
alpha mask (matte), 36
archive, 15
attribute creation, 13
attribute deletion, 14
attributes node, 36

B
background, 1
bounds, 36

C
C API, 7
caching, 28
camera (ray) visibility, 36
Catmull-Clark (subdivision surface), 31
clockwise winding (mesh node), 32
connecting nodes, 14, 15
context handling, 8
controlling rendering, 17
corner (subdivision surface), 31
counterclockwise winding (mesh node), 32
crease (subdivision surface), 31
creating nodes, 12
curve basis, 34
curve normal, 34
curve width, 34
curves, 33
curves optional attributes, 34

D
delayed loading of geometry, 35
deleting an attribute, 14
deleting nodes, 12
diameter of curve, 34
diameter of particles, 34
diffuse (ray) visibility, 36
diffuse ray depth, 29
diffuse ray length, 29
disk cache, 28
disk usage, 28
displacement, 30
displacement shader, 36

E
enum error levels, 16
environment node, 35
error reporting, 16
evaluating Lua scripts, 15
extrapolate curves, 34

F
faceset node, 33
filename (shader node), 36

G
glossy ray length, 29

H
hair (ray) visibility, 36
hair ray depth, 29
hair ray length, 29

I
image quality, 30
indexing example, 11
inline archive, 15
interactive rendering, 17

L
license, 29
light layer, 31
light set, 31

M
matte, 36
mesh example, 32
mesh node, 31
motion blur, 13, 35

N
network cache, 28
node creation, 12
node deletion, 12
node graph, 14, 15
NSI goals & principles, 1
NSIConnect(), 14
NSICreate(), 12
NSIDelete(), 12

69

NSI

NSIDeleteAttribute(), 14
NSIDisconnect(), 15
NSIRenderControl(), 17
NSISetAttribute(), 13
NSISetAttributeAtTime(), 13
nvertices (mesh node), 31

O
optional curves attributes, 34
optional particles attributes, 35
outputlayer, 31

P
P (mesh node), 31
P.indices example, 11
particle id, 35
particle normal, 35
particle width, 34
particles, 34
particles optional attributes, 35
pausing a render, 17
plane node, 31
priority of attributes, 36
procedural node, 35

Q
quantizedemission, 36

R
recursive node deletetion, 13
reflection (ray) visibility, 36
reflection ray depth, 29
reflection ray length, 29
refraction (ray) visibility, 36
refraction ray depth, 29
refraction ray length, 29
regularemission, 36
render time, 30
rendering, 17
resuming a render, 17
root node, 27, 49

S
scripting geometry, 35
server, 29
set, 31
setting an attribute at a time, 13
setting attributes, 13
shader node, 36
shaderfilename (shader node), 36
shaders on curves, 33
shaders on faces, 33
shading rate, 30
shading samples, 30
shadow (ray) visibility, 36
sharpness (subdivision surface), 31
shutter, 13, 35

size of particles, 34
smooth corners (subdivision surface), 31
specular (ray) visibility, 36
specular ray length, 29
starting a render, 17
statistics, 30
stencil (matte), 36
stopping a render, 17
subdivision corner, 31
subdivision crease, 31
subdivision mesh example, 33
subdivision surface, 31
subsurface, 30
surface shader, 36
suspending a render, 17
synchronizing a render, 17

T
tagging faces, 33
temporal sampling, 13
temporary files, 28
terminating a render, 17

V
vertex.size (mesh node), 31
visibility, 36
volume (ray) visibility, 36
volume ray depth, 29
volume ray length, 29
volume samples, 30
volume shader, 36

W
width of curve, 34
width of particles, 34
winding order (mesh node), 32

70 Index

	Background
	Help Wanted
	Naming
	Spelling, Grammar & Content
	Language Bindings

	The Interface
	The Interface Abstraction
	APIs
	The C API
	Context Handling
	Arguments vs. Attributes
	Optional Arguments
	Attributes – Describe the Node’s Specifics

	Passing Optional Arguments
	Node Creation
	Setting Attributes
	Making Connections
	Severing Connections
	Evaluating Procedurals
	Error Reporting
	Rendering

	The C++ API
	Creating a Context
	Argument Passing
	Argument Classes

	The Rust API
	Creating a Context

	The Lua API
	API calls
	Optional function arguments format
	Evaluating a Lua script
	Passing arguments to a Lua script
	Reporting errors from a Lua script

	The Python API
	The Interface Stream
	Dynamic Library Procedurals
	Entry Point
	Procedural Description
	Error Reporting
	Preprocessor Macros

	Nodes
	The Root Node
	The Global Node
	The Set Node
	The Plane Node
	The Mesh Node
	The Faceset Node
	The Curves Node
	The Particles Node
	The Procedural Node
	The Environment Node
	The Shader Node
	The Attributes Node
	The Transform Node
	The Instances Node
	The Outputdriver Node
	The Outputlayer Node
	The Screen Node
	The Volume Node
	Camera Nodes
	The Orthographiccamera Node
	The Perspectivecamera Node
	The Fisheyecamera Node
	The Cylindricalcamera Node
	The Sphericalcamera Node
	Lens Shaders

	Script Objects
	Rendering Guidelines
	Basic Scene Anatomy
	A Word – or Two – About Attributes
	Instancing
	Creating ᴏsʟ Networks
	Lighting in the Nodal Scene Interface
	Area Lights
	Spot and Point Lights
	Directional and HDR Lights

	Defining Output Drivers and Layers
	Light Layers
	Inter-Object Visibility

	Cookbook
	Geometry Creation
	Transforming Geometry

	Acknowledgements
	Index
	Index

